

Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide

Kiyoshi Sasakura,[†] Kenjiro Hanaoka,[†] Norihiro Shibuya,[‡] Yoshinori Mikami,[‡] Yuka Kimura,[‡] Toru Komatsu,[†] Tasuku Ueno,[†] Takuya Terai,[†] Hideo Kimura,[‡] and Tetsuo Nagano^{*,†}

⁺Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

^{*}Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan

Supporting Information

ABSTRACT: Hydrogen sulfide (H_2S) has recently been identified as a biological response modifier. Here, we report the design and synthesis of a novel fluorescence probe for H_2S , HSip-1, utilizing azamacrocyclic copper(II) ion complex chemistry to control the fluorescence. HSip-1 showed high selectivity and high sensitivity for H_2S , and its potential for biological applications was confirmed by employing it for fluorescence imaging of H_2S in live cells.

lthough hydrogen sulfide (H_2S) is a toxic gas with the cha-Aracteristic smell of rotten eggs, recent studies have regarded H₂S as the third gaseous transmitter, in addition to nitric oxide (NO) and carbon monoxide (CO). H_2S appears to be involved in various physiological processes, including relaxation of vascular smooth muscles,¹ mediation of neurotransmission,² inhibition of insulin signaling,³ and regulation of inflammation and O₂ sensing.^{4,5} There are several methods for selective detection of H₂S, among which the most commonly used are the methylene blue method and the sulfide ion-selective electrode method.^{6,7} However, these methods are destructive, requiring homogenization of samples. Therefore, for detailed studies of the physiological functions of H_2S_1 a new method to measure H_2S concentration in cells is required. We focused on fluorescence imaging, because it is suitable for nondestructive detection of targeted biomolecules in live cells or tissues with readily available instruments.⁸ Thus, we set out to develop a sensitive and selective fluorescence probe for H₂S. This involves two substantial challenges. One is to attain sufficient selectivity over other biothiols; i.e., the probe has to be able to measure endogenous H₂S without interference from other biothiols, including reduced glutathione (GSH, present at levels of about 1-10 mM), L-cysteine (L-Cys, about $100 \mu \text{M}$), and thiol-containing proteins.⁹ The other challenge is to achieve sufficient sensitivity, because the concentration of H₂S required to elicit physiological responses has been reported to be 10 μ M-1 mM, although there remains some controversy as to the intracellular H₂S levels generated in response to physiological stimuli.^{1-3,10}

A few fluorescence probes for H_2S have been reported, utilizing sulfide anion-triggered removal of a 2,4-dinitrobenzenesulfonyl group or reduction of azide to amine.^{11–13} However, the reactions are relatively slow and show poor selectivity for H_2S over reactive oxygen species (ROS), such as superoxide (O_2^-) or Na₂SO₃.^{12,14} Recently, Chang et al. have reported that a dipicolylamine

Figure 1. Structures of four macrocyclic fluorescein $-Cu^{2+}$ conjugates: (A) TACN-AF+ Cu^{2+} , (B) Cyclen-AF+ Cu^{2+} (HSip-1), (C) Cyclam-AF+ Cu^{2+} , and (D) TMCyclen-AF+ Cu^{2+} .

(DPA)-fluorescein complex with Cu²⁺ (DPA-AF+Cu²⁺) showed a selective turn-on fluorescence response to sulfide anion.¹⁵ We confirmed that DPA-AF+Cu²⁺ could detect 10 μ M H₂S in an aqueous solution at pH 7.4 (Supporting Information, Figure S1), but this probe also showed fluorescence enhancement upon addition of 10 mM GSH. We hypothesized that improvement of the chelator $-Cu^{2+}$ complex stability in the presence of biothiols would result in a good selectivity for H_2S at low concentrations in the presence of high concentrations of GSH. It is well known that azamacrocyclic rings form stable metal complexes with Cu²⁺, and the paramagnetic Cu^{2+} center has a pronounced quenching effect on fluorophores.¹⁶ On the basis of these facts, we expected that Cu^{2+} would be released from the azamacrocyclic ring when H_2S binds to the Cu²⁺ center, resulting in fluorescence enhancement, whereas the azamacrocyclic Cu²⁺ complex would retain its structure in the presence of high concentrations of GSH, showing no fluorescence enhancement.

On the basis of this hypothesis, we designed and synthesized four sensor probes based on a fluorescein scaffold conjugated with an azamacrocyclic Cu²⁺ complex, employing 1,4,7-triazacyclononane (TACN), 1,4,7,10-tetraazacyclododecane (Cyclen), 1,4,8,11-tetraazacyclotetradecane (Cyclam), and $N_{,}N'_{,}N''$ -trimethylcyclen (TMCyclen) as chelators for Cu²⁺ instead of DPA (Figure 1 and Supporting Information, Schemes S1–S4).

Next, we examined the sensitivity and selectivity of the synthesized compounds for H₂S over GSH by measuring the fluorescence increment upon addition of 10 μ M H₂S or 10 mM GSH. TACN-AF+Cu²⁺ showed high sensitivity and low selectivity (Figure S2), while Cyclam-AF+Cu²⁺ (Figure S3) and TMCyclen-AF+Cu²⁺ (Figure S4) showed low sensitivity and high

Received:August 23, 2011Published:October 14, 2011

Figure 2. (A) Time course of reactions of HSip-1 with no addition (red) or addition of 10 mM GSH (orange), $100 \,\mu$ M Na₂S (green), or 10 μ M Na₂S (blue) in 30 mM HEPES buffer (pH 7.4) at 37 °C. Na₂S and GSH were added at 180 s. Ex/Em = 491/516 nm. (B) Fluorescence spectra of 1 μ M HSip-1 before (red) and after (blue) reaction with 100 μ M Na₂S in 30 mM HEPES buffer (pH 7.4).

Figure 3. Fluorescence enhancement of 1μ M HSip-1 in the presence of thiols, inorganic sulfur compounds, and sodium ascorbate. Bars represent relative fluorescence intensity 30 min after addition of thiols, inorganic sulfur compounds, or sodium ascorbate. The reactions of 1 μ M HSip-1 with (1) 10 μ M Na₂S, (2) 10 mM GSH, (3) 1 mM L-Cys, (4) 1 mM DL-Hcy, (5) 1 mM 2-ME, (6) 100 μ M DTT, (7) 1 mM NaSCN, (8) 1 mM Na₂SO₃, (9) 1 mM Na₂So₃, and (10) 10 mM sodium ascorbate were performed in 30 mM HEPES buffer (pH 7.4) at 37 °C.

selectivity. Fortunately, Cyclen-AF+ Cu^{2+} (HSip-1 = hydrogen sulfide imaging probe-1) showed excellent properties as a fluorescence probe for H_2S (Abs_{max}/Em_{max} = 491/516 nm, $\Phi_{\rm fl}$ = 0.019 in 30 mM HEPES buffer at pH 7.4); i.e., it showed a large and immediate increment of fluorescence intensity by 50-fold upon addition of 10 μ M H₂S, whereas almost no fluorescence increment was observed upon addition of 10 mM GSH (Figure 2). In addition, the fluorescence enhancement induced by H₂S was retained even in the presence of 10 mM GSH (Figure S5). HSip-1 also showed high selectivity over other thiols (1 mM L-Cys, DL-Hcy, 2-mercaptoethanol (2-ME), and 100 μ M dithiothreitol (DTT)), inorganic sulfur compounds (1 mM NaSCN, Na₂SO₃, and Na₂S₂O₃), and a reducing condition (10 mM sodium ascorbate) (Figures 3 and S6). Moreover, HSip-1 did not show any fluorescence enhancement in response to ROS or reactive nitrogen species (RNS), such as hydrogen peroxide (H₂O₂), hydroxyl radical (*OH), peroxynitrite (ONOO⁻), hypochlorite (⁻OCl), superoxide (O₂⁻), singlet oxygen $({}^{1}O_{2})$, and nitric oxide (*NO). Upon addition of Angeli's salt (NO⁻ donor), a small fluorescence enhancement was observed (Figures S7 and S8). Thus, HSip-1 offers high selectivity for H₂S compared with previously reported fluorescence probes utilizing a 2,4-dinitrosulfonyl group or an azide group.

Figure 4. (A) Structure of cysteine-activated H_2S donor. (B) Time course of reactions of 1 μ M HSip-1 with no addition (red) or addition of 50 μ M H₂S donor (blue), 1 mM L-Cys (yellow), or 50 μ M H₂S donor + 1 mM L-Cys (green) in 30 mM HEPES buffer (pH 7.4) with 0.1% tetrahydrofuran as a cosolvent at 37 °C. H₂S donor and L-Cys were added at 180 s, as indicated by an arrow. Ex/Em = 491/516 nm.

Figure 5. Visualization of H₂S in live cells using HSip-1 DA. HeLa cells were incubated with 30 μ M HSip-1 DA in DMEM containing 0.3% DMSO for 30 min. (A) Differential interference contrast (DIC) and fluorescence (FL) images were captured after addition of 500 μ M Na₂S in HBSS solution. (B) Average FI_{20 min}/FI_{0 min} intensity ratios in fluorescence images after addition of 0, 200, or 500 μ M Na₂S in HBSS buffer. The excitation and emission wavelengths were 470–490 and 515–550 nm, respectively. Scale bar, 10 μ m. Representative fluorescence images from replicate experiments (n = 3) are shown. Error bars are \pm SD.

Xian et al. have reported cysteine-activated H₂S donors which mimic the slow and continuous endogenous biosynthesis of H₂S from L-Cys mediated by enzymes such as cystathionine β -synthase (CBS) and cystathionine γ -lyase (CSE).¹⁷ We synthesized this H₂S donor (Figure 4A) to examine the feasibility of using HSip-1 to monitor pseudo-enzymatic H₂S production. We could detect timedependent H₂S release associated with decomposition of the H₂S donor by using HSip-1 in the presence of 1 mM L-Cys (Figure 4B).

The spectroscopic properties of HSip-1, as well as its selectivity for H₂S, seemed appropriate for cellular application, so we next considered the suitability of HSip-1 for fluorescence imaging of cellular H₂S. However, this probe is membrane-impermeable because of its hydrophilicity derived from the carboxyl group and he cyclen $-Cu^{2+}$ complex moiety. Therefore, we employed a standard diacetylation approach to improve the membrane permeability and synthesized diacetylated HSip-1 (HSip-1 DA); this was confirmed to be a membrane-permeable precursor that is hydrolyzed to HSip-1 by intracellular esterases (Scheme S2). Next, HeLa cells were incubated with 30 μ M HSip-1 DA containing 0.3% DMSO as a cosolvent in Dulbecco's modified Eagle's medium (DMEM) for 30 min and then washed with Hanks' Balanced Salt Solutions (HBSS), and various concentrations of Na₂S (0, 200, or 500 μ M) were added to the medium. Upon addition of 500 μ M Na₂S, a large intracellular fluorescence enhancement was observed, while no significant fluorescence

increment was seen in the absence of Na₂S (Figure 5). The results of CCK-8 assay showed that HSip-1 DA exhibits no cytotoxicity at concentrations up to 100 μ M (Figure S9).

In summary, we have developed a novel fluorescence probe for H₂S, HSip-1, based on azamacrocyclic Cu²⁺complex chemistry. HSip-1 can sensitively detect H₂S in aqueous solution with high selectivity over biothiols, inorganic sulfur compounds, ROS, and RNS and has excellent photophysical properties for biological applications, arising from its fluorescein scaffold. We confirmed that HSip-1 could be used both for detection of pseudoenzymatic H₂S release in a cuvette and for real-time fluorescence imaging of intracellular H₂S in live cells. In addition, we also confirmed that HSip-1 could detect H₂S produced by 3-mercaptopyruvate sulfurtransferase (3MST), or lysate of 3MST-expressing cells, and 3-mercaptopyruvate, i.e., H₂S-producing enzyme and its substrate (Figure S10).¹⁸ We anticipate that HSip-1 will be useful for high-throughput screening of CBS, CSE, and 3MST agonists and antagonists, as well as for detailed investigation of a wide range of biological functions of H_2S .

ASSOCIATED CONTENT

Supporting Information. Synthesis; experimental details; characterization of developed compounds; and experiments using living cells. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author tlong@mol.f.u-tokyo.ac.jp

ACKNOWLEDGMENT

This work was supported in part by a Grant-in-Aid for JSPS Fellows (to K.S.) and by a Grant-in-Aid for Scientific Research (Specially Promoted Research No. 22000006 to T.N., 21659024 to K.H., and 21750135 to T.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. K.H. was also supported by Inoue Foundation for Science, the Research Foundation for Pharmaceutical Sciences, Konica Minolta Science and Technology Foundation, and The Asahi Glass Foundation.

REFERENCES

(1) Yang, G. D.; Wu, L. Y.; Jiang, B.; Yang, W.; Qi, J. S.; Cao, K.; Meng, Q. H.; Mustafa, A. K.; Mu, W. T.; Zhang, S. M.; Snyder, S. H.; Wang, R. *Science* **2008**, *322*, 587.

(2) Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066.

(3) (a) Kaneko, Y.; Kimura, Y.; Kimura, H.; Niki, I. *Diabetes* **2006**, 55, 1391. (b) Yang, W.; Yang, G. D.; Jia, X. M.; Wu, L. Y.; Wang, R. *J. Physiol.* **2005**, 569, 519.

(4) (a) Li, L.; Bhatia, M.; Zhu, Y. Z.; Zhu, Y. C.; Ramnath, R. D.; Wang, Z. J.; Anuar, F. B. M.; Whiteman, M.; Salto-Tellez, M.; Moore, P. K. *FASEB J.* **2005**, *19*, 1196. (b) Zanardo, R. C. O.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J. L. *FASEB J.* **2006**, *20*, 2118.

(5) Peng, Y. J.; Nanduri, J.; Raghuraman, G.; Souvannakitti, D.; Gadalla, M. M.; Kumar, G. K.; Snyder, S. H.; Prabhakar, N. R. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 10719.

(6) Kuban, V.; Dasgupta, P. K.; Marx, J. N. Anal. Chem. 1992, 64, 36.
(7) (a) Tsai, D. M.; Kumar, A. S.; Zen, J. M. Anal. Chim. Acta 2006, 556, 145. (b) Lawrence, N. S.; Deo, R. P.; Wang, J. Anal. Chim. Acta 2004, 517, 131.

(8) (a) Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. *Anal. Chem.* **1998**, *70*, 2446. (b) Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. *J. Am. Chem. Soc.* **2007**, *129*, 7313. (c) Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. *J. Am. Chem. Soc.* **2011**, *133*, 5680.

(9) (a) Hong, R.; Han, G.; Fernandez, J. M.; Kim, B. J.; Forbes, N. S.; Rotello, V. M. J. Am. Chem. Soc. 2006, 128, 1078. (b) Chiku, T.; Padovani, D.; Zhu, W.; Singh, S.; Vitvitsky, V.; Banerjee, R. J. Biol. Chem. 2009, 284, 11601.

(10) Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M. G.; Branski, L. K.; Herndon, D. N.; Wang, R.; Szabo, C. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106*, 21972.

(11) Yang, X. F.; Wang, L. P.; Xu, H. M.; Zhao, M. L. Anal. Chim. Acta **2009**, 631, 91.

(12) Lippert, A. R.; New, E. J.; Chang, C. J. J. Am. Chem. Soc. 2011, 133, 10078.

(13) Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.; Lefer,
 D. J.; Wang, B. Angew. Chem., Int. Ed. 2011, 50, 9672.

(14) Maeda, H.; Yamamoto, K.; Kohno, I.; Hafsi, L.; Itoh, N.; Nakagawa, S.; Kanagawa, N.; Suzuki, K.; Uno, T. *Chem.—Eur. J.* **2007**, *13*, 1946.

(15) Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S. K. Chem. Commun. 2009, 7390.

(16) (a) Koike, T.; Watanabe, T.; Aoki, S.; Kimura, E.; Shiro, M.
 J. Am. Chem. Soc. 1996, 118, 12696. (b) Yoon, J. Y.; Ohler, N. E.; Vance,
 D. H.; Aumiller, W. D.; Czarnik, A. W. Tetrahedron Lett. 1997, 38, 3845.

(17) (a) Zhao, Y.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2011,
 133, 15. (b) Hosoki, R.; Matsuki, N.; Kimura, H. Biochem. Biophys. Res.
 Commun. 1997, 237, 527. (c) Zhao, W. M.; Zhang, J.; Lu, Y. J.; Wang, R.
 EMBO J. 2001, 20, 6008.

(18) (a) Shibuya, N.; Mikami, Y.; Kimura, Y.; Nagahara, N.; Kimura,
 H. J. Biochem. 2009, 146, 623. (b) Mikami, Y.; Shibuya, N.; Kimura, Y.;
 Nagahara, N.; Ogasawara, Y.; Kimura, H. Biochem. J. 2011, 439, 479.